Copied to
clipboard

G = C42.9F5order 320 = 26·5

6th non-split extension by C42 of F5 acting via F5/D5=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C42.9F5, C52C8.4C8, C10.2(C4⋊C8), C51(C8.C8), (C4×C20).10C4, C20.11(C2×C8), C4.6(D5⋊C8), C52C8.37D4, C4.24(C4⋊F5), C20.24(C4⋊C4), C52C8.11Q8, C20.C8.2C2, (C2×C10).18M4(2), C2.3(Dic5⋊C8), C22.3(C22.F5), (C4×C52C8).19C2, (C2×C52C8).26C4, (C2×C4).114(C2×F5), (C2×C20).135(C2×C4), (C2×C52C8).336C22, SmallGroup(320,199)

Series: Derived Chief Lower central Upper central

C1C20 — C42.9F5
C1C5C10C20C52C8C2×C52C8C20.C8 — C42.9F5
C5C10C20 — C42.9F5
C1C4C2×C4C42

Generators and relations for C42.9F5
 G = < a,b,c,d | a4=b4=c5=1, d4=b, ab=ba, ac=ca, dad-1=a-1b-1, bc=cb, bd=db, dcd-1=c3 >

2C2
2C4
2C4
2C10
2C2×C4
5C8
5C8
5C8
5C8
2C20
2C20
5C2×C8
5C2×C8
10C16
10C16
2C2×C20
5M5(2)
5C4×C8
5M5(2)
2C5⋊C16
2C5⋊C16
5C8.C8

Smallest permutation representation of C42.9F5
On 80 points
Generators in S80
(2 14 10 6)(4 16 12 8)(17 29 25 21)(19 31 27 23)(34 46 42 38)(36 48 44 40)(49 61 57 53)(51 63 59 55)(65 77 73 69)(67 79 75 71)
(1 5 9 13)(2 6 10 14)(3 7 11 15)(4 8 12 16)(17 21 25 29)(18 22 26 30)(19 23 27 31)(20 24 28 32)(33 37 41 45)(34 38 42 46)(35 39 43 47)(36 40 44 48)(49 53 57 61)(50 54 58 62)(51 55 59 63)(52 56 60 64)(65 69 73 77)(66 70 74 78)(67 71 75 79)(68 72 76 80)
(1 28 70 43 54)(2 44 29 55 71)(3 56 45 72 30)(4 73 57 31 46)(5 32 74 47 58)(6 48 17 59 75)(7 60 33 76 18)(8 77 61 19 34)(9 20 78 35 62)(10 36 21 63 79)(11 64 37 80 22)(12 65 49 23 38)(13 24 66 39 50)(14 40 25 51 67)(15 52 41 68 26)(16 69 53 27 42)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)

G:=sub<Sym(80)| (2,14,10,6)(4,16,12,8)(17,29,25,21)(19,31,27,23)(34,46,42,38)(36,48,44,40)(49,61,57,53)(51,63,59,55)(65,77,73,69)(67,79,75,71), (1,5,9,13)(2,6,10,14)(3,7,11,15)(4,8,12,16)(17,21,25,29)(18,22,26,30)(19,23,27,31)(20,24,28,32)(33,37,41,45)(34,38,42,46)(35,39,43,47)(36,40,44,48)(49,53,57,61)(50,54,58,62)(51,55,59,63)(52,56,60,64)(65,69,73,77)(66,70,74,78)(67,71,75,79)(68,72,76,80), (1,28,70,43,54)(2,44,29,55,71)(3,56,45,72,30)(4,73,57,31,46)(5,32,74,47,58)(6,48,17,59,75)(7,60,33,76,18)(8,77,61,19,34)(9,20,78,35,62)(10,36,21,63,79)(11,64,37,80,22)(12,65,49,23,38)(13,24,66,39,50)(14,40,25,51,67)(15,52,41,68,26)(16,69,53,27,42), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)>;

G:=Group( (2,14,10,6)(4,16,12,8)(17,29,25,21)(19,31,27,23)(34,46,42,38)(36,48,44,40)(49,61,57,53)(51,63,59,55)(65,77,73,69)(67,79,75,71), (1,5,9,13)(2,6,10,14)(3,7,11,15)(4,8,12,16)(17,21,25,29)(18,22,26,30)(19,23,27,31)(20,24,28,32)(33,37,41,45)(34,38,42,46)(35,39,43,47)(36,40,44,48)(49,53,57,61)(50,54,58,62)(51,55,59,63)(52,56,60,64)(65,69,73,77)(66,70,74,78)(67,71,75,79)(68,72,76,80), (1,28,70,43,54)(2,44,29,55,71)(3,56,45,72,30)(4,73,57,31,46)(5,32,74,47,58)(6,48,17,59,75)(7,60,33,76,18)(8,77,61,19,34)(9,20,78,35,62)(10,36,21,63,79)(11,64,37,80,22)(12,65,49,23,38)(13,24,66,39,50)(14,40,25,51,67)(15,52,41,68,26)(16,69,53,27,42), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80) );

G=PermutationGroup([[(2,14,10,6),(4,16,12,8),(17,29,25,21),(19,31,27,23),(34,46,42,38),(36,48,44,40),(49,61,57,53),(51,63,59,55),(65,77,73,69),(67,79,75,71)], [(1,5,9,13),(2,6,10,14),(3,7,11,15),(4,8,12,16),(17,21,25,29),(18,22,26,30),(19,23,27,31),(20,24,28,32),(33,37,41,45),(34,38,42,46),(35,39,43,47),(36,40,44,48),(49,53,57,61),(50,54,58,62),(51,55,59,63),(52,56,60,64),(65,69,73,77),(66,70,74,78),(67,71,75,79),(68,72,76,80)], [(1,28,70,43,54),(2,44,29,55,71),(3,56,45,72,30),(4,73,57,31,46),(5,32,74,47,58),(6,48,17,59,75),(7,60,33,76,18),(8,77,61,19,34),(9,20,78,35,62),(10,36,21,63,79),(11,64,37,80,22),(12,65,49,23,38),(13,24,66,39,50),(14,40,25,51,67),(15,52,41,68,26),(16,69,53,27,42)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)]])

44 conjugacy classes

class 1 2A2B4A4B4C···4G 5 8A8B8C8D8E···8J10A10B10C16A···16H20A···20L
order122444···4588888···810101016···1620···20
size112112···24555510···1044420···204···4

44 irreducible representations

dim1111112222444444
type++++-++-
imageC1C2C2C4C4C8D4Q8M4(2)C8.C8F5C2×F5D5⋊C8C4⋊F5C22.F5C42.9F5
kernelC42.9F5C4×C52C8C20.C8C2×C52C8C4×C20C52C8C52C8C52C8C2×C10C5C42C2×C4C4C4C22C1
# reps1122281128112228

Matrix representation of C42.9F5 in GL4(𝔽241) generated by

1000
0100
001770
000177
,
64000
06400
00640
00064
,
19024000
19124000
00052
0019051
,
0010
0001
14012700
14610100
G:=sub<GL(4,GF(241))| [1,0,0,0,0,1,0,0,0,0,177,0,0,0,0,177],[64,0,0,0,0,64,0,0,0,0,64,0,0,0,0,64],[190,191,0,0,240,240,0,0,0,0,0,190,0,0,52,51],[0,0,140,146,0,0,127,101,1,0,0,0,0,1,0,0] >;

C42.9F5 in GAP, Magma, Sage, TeX

C_4^2._9F_5
% in TeX

G:=Group("C4^2.9F5");
// GroupNames label

G:=SmallGroup(320,199);
// by ID

G=gap.SmallGroup(320,199);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,28,141,176,100,1123,136,102,6278,3156]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^5=1,d^4=b,a*b=b*a,a*c=c*a,d*a*d^-1=a^-1*b^-1,b*c=c*b,b*d=d*b,d*c*d^-1=c^3>;
// generators/relations

Export

Subgroup lattice of C42.9F5 in TeX

׿
×
𝔽